Types of Acid

Tuesday, May 12, 2009

Arrhenius acids

The Swedish chemist Svante Arrhenius first attributed the property of acidity to hydrogen in 1884. An Arrhenius acid is a substance that increases the concentration of the hydronium ion, H3O+, when dissolved in water. This definition stems from the equilibrium dissociation of water into hydronium and hydroxide (OH-) ions:

H2O(l) + H2O (l) is in equilibrium with H3O+(aq) + OH-(aq)

In pure water the majority of molecules exist as H2O, but a small number of molecules are constantly dissociating and re-associating. Pure water is neutral with respect to acidity or basicity because the concentration of hydroxide ions is always equal to the concentration of hydronium ions. An Arrhenius base is a molecule which increases the concentration of the hydroxide ion when dissolved in water. Note that chemists often write H+(aq) and refer to the hydrogen ion when describing acid-base reactions but the free hydrogen nucleus, a proton, does not exist alone in water, it exists as the hydronium ion, H3O+.

Brønsted acids

Although the Arrhenius concept is quite useful for describing many reactions, it is also quite limited in its scope. In 1923 chemists Johannes Nicolaus Brønsted and Thomas Martin Lowry independently recognized that acid-base reactions involve the transfer of a proton. A Brønsted-Lowry acid (or simply Brønsted acid) is a species that donates a proton to a Brønsted-Lowry base. Brønsted-Lowry acid-base theory has several advantages over Arrhenius theory. Consider the following reactions of acetic acid (CH3COOH), the organic acid that gives vinegar its characteristic taste:

File:Acid-base.png

Both theories easily describe the first reaction: CH3COOH acts as an Arrhenius acid because it acts as a source of H3O+ when dissolved in water, and it acts as a Brønsted acid by donating a proton to water. In the second example CH3COOH undergoes the same transformation, donating a proton to ammonia (NH3), but cannot be described using the Arrhenius definition of an acid because the reaction does not produce hydronium. Brønsted-Lowry theory can also be used to describe molecular compounds, whereas Arrhenius acids must be ionic compounds. Hydrogen chloride (HCl) and ammonia combine under several different conditions to form ammonium chloride, NH4Cl. In aqueous solution HCl behaves as hydrochloric acid and exists as hydronium and chloride ions. The following reactions illustrate the limitations of Arrhenius' definition:

1.) H3O+(aq) + Cl-(aq) + NH3 → Cl-(aq) + NH4+(aq)
2.) HCl(benzene) + NH3(benzene) → NH4Cl(s)
3.) HCl(g) + NH3(g) → NH4Cl(s)

As with the acetic acid reactions, both definitions work for the first example, where water is the solvent and hydronium ion is formed. The next two reactions do not involve the formation of ions but can still be viewed as proton transfer reactions. In the second reaction hydrogen chloride and ammonia in react to form solid ammonium chloride in a benzene solvent and in the third gaseous HCl and NH3 combine to form the solid.

Lewis acids

A third concept was proposed by Gilbert N. Lewis which includes reactions with acid-base characteristics that do not involve a proton transfer. A Lewis acid is a species that accept a pair of electrons from another species in other words, it is an an electron pair acceptor. Brønsted acid-base reactions are proton transfer reactions while Lewis acid-base reactions are electron pair transfers. All Brønsted acids are also Lewis acids, but not all Lewis acids are Brønsted acids. Contrast the following reactions which could be described in terms of acid-base chemistry.

File:LewisAcid.png

In the first reaction a fluoride ion, F-, gives up an electron pair to boron trifluoride to form the product tetrafluoroborate. Fluoride "loses" a pair of valence electrons because the electrons shared in the B—F bond are located in the region of space between the two atomic nuclei and are therefore more distant from the fluoride nucleus than they are in the lone fluoride ion. BF3 is a Lewis acid because it accepts the electron pair from fluoride. This reaction cannot be described in terms of Brønsted theory because there is no proton transfer. The second reaction can be described using either theory. A proton is transferred from an unspecified Brønsted acid to ammonia, a Brønsted base; alternatively, ammonia acts as a Lewis base and transfers a lone pair of electrons to form a bond with a hydrogen ion. The species that loses the proton is the Lewis acid; for example, the oxygen atom in H3O+ gains a pair of electrons when one of the H—O bonds is broken and the electrons shared in the bond become localized on oxygen. Depending on the context, Lewis acids may also be described as a reducing agent or an electrophile.

The Brønsted-Lowry definition is the most widely used definition; unless otherwise specified acid-base reactions are assumed to involve the transfer of a proton (H+) from an acid to a base. Lewis acids are sometimes described as electrophiles.

0 comments:

Visitors

PlugIn.ws - Free Hit Counter, Web Site Statistics, Traffic Analysis

  © Blogger template Leaving by Ourblogtemplates.com 2008

Back to TOP